

A New Generation of Earthquake Catalogs

Felix Waldhauser

Kaiwen Wang, Eric Beauce, Theresa Sawi, David Schaff, Ben Holtzman, Nate Groebner, Weiqiang Zhu (UCB), and the SCOPED gang

> Lamont-Doherty Earth Observatory Columbia University

CRESCENT ML WS, Seattle May12-14 2025

Overview

1. Advancements in large-scale, high-precision, deepmagnitude earthquake catalog production and seismic monitoring

2. Experiences from California, Italy, and Axial Seamount

3. Discoveries, opportunities, challenges

First Teleseismic Seismogram in 1889

Discovery, by Inge Lehmann in 1936, that inner core is solid

Earthquake monitoring

- 1. Detection
- 2. Arrival time picking
- 3. Association
- 4. Discrimination
- 5. Location, magnitude

Earthquake relocation

- 1. Detection
- 2. Arrival time picking
- 3. Association
- 4. Discrimination
- 5. Location, magnitude
- 6. Relative time measurement
- 7. Relative location, magnitude
- 8. Template matching

Earthquake monitoring with machine-learning

- 1. Detection
- 2. Arrival time picking
- 3. Association
- 4. Discrimination
- 5. Location, magnitude
- 6. Relative time measurement
- 7. Relative location, magnitude
- 8. Template matching

Earthquake monitoring with machine-learning

- 1. Detection
- 2. Arrival time picking
- 3. Association
- 4. Discrimination
- 5. Location, magnitude
- 6. Relative time measurement
- 7. Relative location, magnitude
- 8. Template matching

Seismic Computational Platform for Empowering Discovery.

Modules and workflows for retro-active and real-time earthquake catalog production

High-resolution (10s of m) catalog production at scale

California

https://nocalDD.ldeo.columbia.edu

 \rightarrow

100s of kms 1,000 stations 1 million eqs in 40 years **Central Italy**

Axial Seamount

https://axiaIDD.Ideo.columbia.edu

10s of kms 130 stations 1 million eqs in 1 year \rightarrow

kilometers 7 stations 150k+ eqs in days/weeks

AMONT-DOHERTY Massive-Scale X-correlation and Relocation in California EARTH OBSERVATORY 妃 COLUMBIA UNIVERSITY

NCSN network

Cross-correlation

High-resolution eq locations

Repeating earthquakes

Real-time monitoring

NCSN archive 1984-2021:

- 1,000 stations
- 1,000,000 earthquakes
- 50 million seismograms
- 20 million phase picks (mostly P)

Hypocenter relocation:

- 100+ billion correlations
- 7.5 billion correlation delay times (Cf >0.7) (P&S!)
- 50 billion DD equations
- Resolution: 10s 100s meters (10-100 X improvement)

Waveform correlation measurements

Percentage of events with

Decay of correlation coefficient with increasing hypocenter separation

Waveform correlation measurements

Percentage of events with

Decay of correlation coefficient with increasing hypocenter separation

Repeating earthquakes in California

Repeating earthquakes rupture the same fault surface with similar magnitudes and focal mechanisms, thus generating close to identical seismograms.

- Thought to represent stuck asperity in an otherwise creeping fault.
- Potential to improve hazard assessment (Field et al., 2014), earthquake forecast (Zechar et al., 2012), and seismic monitoring capabilities.
- Increasingly important role in the study of fault processes and behavior (recent review by Uchida and Bürgmann (2019).

Search for repeating earthquakes

Comprehensive, iterative, semi-automated search process:

- Highly correlated seismograms (over long windows)
- Similar magnitudes
- Co-located hypocenters (within source areas)
- -> Isolated sequences only

Resulting catalog of repeating earthquakes:

7,713 sequences of a total of 27,675 events (1984-2014)

Additional measurements for each sequence:

- Differential magnitudes
- CV of recurrence interval
- Slip rates (following Nadeau & Johnson, 1998)

Waldhauser & Schaff (2021)

Temporal characteristics

• Recurrence time coefficient of variation (CV):

- periodic (CV~0)
- random (CV>>0)
- temporal clustering
- piecewise periodic

Geographical distribution

Moment vs. recurrence interval

Event early 0>Tr/Tr_{av}>0 Event late Event smaller 0>M/M_{av}>0 Event bigger

- When solid dots overlap, then early repeats have smaller magnitudes, late repeats have larger magnitudes
- Consistent with Rubinstein et al. (2012) we find no support of time-predictable model, in which the recurrence time scales with the size of the previous event.
- Evidence in support of the slip-predictable model, where slip in an earthquake scales with time since the last event, suggesting that knowing the recurrence time of one event lets you predict its size.

Fault slip rates and slip partitioning

Waldhauser & Schaff (2021)

Precision monitoring in Northern California (NCSN) NT XC DD DDR

IIm a DD male settion also

Big Data Problem

Growth in correlation measurements (e.g., N California)

Growth in newly detected events (e.g., Central Italy)

Evaluation of location robustness and uncertainties

- 1. Bootstrap relative location errors and other statistical analysis.
- Use known repeating events as ground truth: 95% of DD catalog events within 10 m of repeaters. 95% of NCSN catalog events within 500 m.
- Shift in new locations within uncertainties of original locations:
 Std: dX = 0.7 km; dz = 1.4 km
- 4. Compare pick and x-corr delay times.

Deep magnitude catalog for 10 years before the 2019 M7.1 Ridgecrest event

- Machine learning (PhaseNet) and template matching (FastMatch) increases the number of earthquakes in the SCSN catalog by a factor of 40!
- New catalog shows that strength of tidal modulation of seismicity along the fault is continuously increasing starting about 1.5 years before the mainshock.

Beauce et al. (2023)

Increase in tidal modulation starting about 1.5 years before the mainshock

Amatrice sequence, Central Italy, 2016-2017 Evolution of catalogs

Longitude

Chiaraluce et al (2022)

Evolution of catalogs: 2016-2017 Central Italy sequence

% of events with correlated waveforms

Chiaraluce et al. (2022)

Waldhauser et al. (2021)

Fault geometry, structure, mechanics

Mt. Vettore normal fault

Bookshelf structure

Earthquake density plot showing narrow Mt. Vettore normal fault (red) and bookshelf faults truncated by the detachment horizon (blue).

Waldhauser etal 2021

Fault zone width and inferred complexity

Perrin et al. (2021)

- 45 miles from Lamont
- 80+ media responses
- Record DYFI reports
- 150+ aftershocks
- M3.7 aftershock on April 5, 6 PM

km 100 50 🖍 RAMAPO FAULT SYSTEM Earthquake 1970-2003 CEarthquake 1627-1969 LCSN BB Stations LCSN SP Stations

Earthquakes in New York City and Surounding Area 1627-2003

- back-projection
- machine-learning
- template-matching
- cross-correlation
- double-differencing

 \Rightarrow 2,000 aftershocks vs. ~200 by USGS!

Beauce et al (2025)

Kolawole et al (2025)

Axial Seamount (North Pacific)

Picker performance: Kurtosis vs PhaseNet picks

Near-surface phase conversions/reflections

Near-surface phase conversions/reflections

 Consistent late or early picking is OK (except maybe for P-S conversions), but not across.

Unsupervised machine learning detects volcanic precursors

Unsupervised spectral feature extraction and clustering (specUFEx)

Mixed Frequency Earthquakes Regular Earthquakes A EQs **MFEs** D reflection from sea surface reflection from sea surface 50000 HHZ P 10000 HHZ o MMMMM -10000-50000 0.5 0.5 1.0 1.5 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 2.0 2.5 3.0 3.5 4.0 time(s) time(s) Е В С F MFEs EQs EQs MFEs 50 50 0 40 40 3 states (ZH) 20 states (ZH)) 20 6 6 9 9 10 10 12 12 3 2 3 1 1 2 Ó 3 6 9 12 Ó 3 6 9 12 time(s) time(s) states states -8.400 00 Counts De-tided diff uplift (m) MFEs 80 30 De-tided diff uplift (m) Moment -8.45 EQs -8.6 Moment 60 -8.4640 Counts -8.47-8.8 20 -8.48 1019 -9.0 0 0 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 Hours on Apr 24,2015 Hours on Apr 24,2015

Holtzman, Paisley et al. (2018)

Kaiwen Wang et al (2024)

Interpretation: MFEs track movement of volatiles or magma

Real-time implementation: *https://axiaIDD.Ideo.columbia.edu*

ML-DD real-time workflow

Real-Time, High-Precision, Deep-Magnitude Earthquake Catalog for Axial Seamount Combining machine learning, cross-correlation and double-difference algorithms

Last updated on Mon Dec 16 14:50:46 UTC 2024

Downloads: ML-DD real-time catalog, Jan 2022 - present ML-DD base catalog, 2014-2021

unsupervised ML.

here.

· For the machine-learning based single-event location catalog before DD relocation click here. · Search catalogs here.

About: This website displays near-real-time, machine-learning based, double-difference hypocenter locations for earthquakes recorded by the Ocean Observatories Initiative (OOI) cabled OBS array at Axial Seamount. The continuous

waveform data is processed using machine-

learning methods for detection, phase arrival-time picking, and association. New events are then

located relative to a high-resolution background

(base) catalog using waveform cross-correlation

and double-differences. For more details see

Precursory mixed frequency earthquakes (MFEs; blue squares in figure), lava flow events, and whale calls are also monitored, using

This web site is updated every 10 minutes.

Archived DDRT solutions: 2022: 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12 2023: 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12 2024: 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12

Analysis: Histograms of seismic activity

Seismicity last we

MFE ratio 2015 pre-erupti

Most recent events (events in queue = 0):

DATE TIME (UTC) LAT

ID

Q: Solution quality **DX**: Shift between DD and network location (km); **V**: version (SE.DD) If Q='-': No DDRT solution computed.

tech: technical information: 3D; 3D viewer; waves: wave plots: USGS: USGS event page

LON

435100095 2024/12/16 13:02:20.460 45.94767 -129.99246 0.365 0.30 2 0.07 1A.3 tech 3D waves

435100091 2024/12/16 11:42:39.590 45.95353 -129.99680 0.273 0.20 2 0.23 1A.3 tech 3D waves 435100088 2024/12/16 11:28:16.620 45.94403 -130.02094 0.754 0.10 1 0.83 1A.3 tech 3D waves 435100083 2024/12/16 11:23:2.930 45.95349 -129.99598 0.805 0.50 1 0.27 1A.3 tech 3D waves

435100081 2024/12/16 10:46:0.740 45.95053 -129.99559 0.514 0.30 1 0.23 1A.3 tech 3D waves 435100080 2024/12/16 10:44:32.890 45.95474 -129.99399 0.764 0.30 2 0.73 1A.3 tech 3D waves 435100075 2024/12/16 10:31:7.470 45.89362 -129.95404 0.010 0.30 2 7.40 1A.3 tech 3D waves 435100074 2024/12/16 10:28:51.930 45.90572 -130.00926 2.293 0.50 2 4.21 1A.3 tech 3D waves

435100072 2024/12/16 07:46:8.500 45.92729 -129.99144 0.870 0.30 1 0.69 1A.3 tech 3D waves

435100069 2024/12/16 07:17:56.670 45.94399 -129.98431 3.774 0.30 2 1.74 1A.3 tech 3D waves 435100063 2024/12/16 06:16:42.760 45.94071 -130.01445 0.640 0.50 1 0.45 1A.3 tech 3D waves 435100061 2024/12/16 06:02:24.870 45.92841 -129.98385 1.660 0.00 2 0.61 1A.3 tech 3D wayes

DEPTH ML Q DX

Wang et al (SRL, 2024) Waldhauser et al (2020)

Opportunities and Challenges

Opportunities

- Large archives of continuous waveforms
- Decades of expert labeled data
- Unlimited compute power
- Widely used algorithms that take advantage of all the above
- New generation of deep-magnitude earthquake catalogs that enable research and discovery
- New era of high-precision seismic monitoring

Challenges

- Ensure reliability of catalog and products
- Raise awareness of limitations
- New generation of machine-seismologists
- Machine learning of seismogenic processes

Opportunities and Challenges

Opportunities

- Large archives of continuous waveforms
- Decades of expert labeled data
- Unlimited compute power
- Widely used algorithms that take advantage of all the above
- New generation of deep-magnitude earthquake catalogs that enable research and discovery
- New era of high-precision seismic monitoring

Challenges

- Ensure reliability of catalog and products
- Raise awareness of limitations
- New generation of machine-seismologists
- Machine learning of seismogenic processes

Most annoying new ML problem

Event IDs

Thank you!