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Overview

1. Advancements in large-scale, high-precision, deep-
magnitude earthquake catalog production and seismic 
monitoring

2. Experiences from California, Italy, and Axial Seamount

3. Discoveries, opportunities, challenges



First Teleseismic Seismogram in 1889

Discovery, by Inge Lehmann in 
1936, that inner core is solid 



Earthquake monitoring

1. Detection 
2. Arrival time picking 
3. Association 
4. Discrimination 
5. Location, magnitude



Earthquake relocation

1. Detection 
2. Arrival time picking 
3. Association 
4. Discrimination 
5. Location, magnitude
6. Relative time measurement
7. Relative location, magnitude
8. Template matching



Earthquake monitoring with machine-learning

1. Detection 
2. Arrival time picking 
3. Association 
4. Discrimination 
5. Location, magnitude
6. Relative time measurement
7. Relative location, magnitude
8. Template matching



Earthquake monitoring with machine-learning

1. Detection 
2. Arrival time picking 
3. Association 
4. Discrimination 
5. Location, magnitude
6. Relative time measurement
7. Relative location, magnitude
8. Template matching



Detection
• STA/LTA
• PhaseNet

Phase 
picking

• PhaseNet
• Kurtosis

Association
• GaMMA
• BeamNetR

Location
• HypoInv
• NNL
• Back proj

Correlation 
timing, mag
• Xtime

Precision 
location

• HypoDD/RT

Template 
detection

• FastMatch
• Xdetect

Spectral 
analysis

• specUFEx

Continuous/streaming  
waveforms

4D 
visualization

&analysis
• EqView4D

Retro-active:
Millions  of earthquakes
Billions of correlations
Hours/days of computations

Real-time:
Tens of events per minute
Tens of seconds 
computation

Source 
discrimination
• specUFEx

Modules and workflows for retro-active and 
real-time earthquake catalog production

Clustering
• K-means
• Hyrarchial
• etc

Analysis, Discovery

Pr
od

uc
tio

n
Seismic Computational Platform for Empowering Discovery.



High-resolution (10s of m) catalog production at scale

California Central Italy Axial Seamount

100s of kms                 à      10s of kms             à          kilometers
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1 million eqs in 40 years                       1 million eqs in 1 year                               150k+ eqs in days/weeks

200 km 20 km 2 km

1,000 stations                        130 stations                                   7 stations

https://axialDD.ldeo.columbia.eduhttps://nocalDD.ldeo.columbia.edu



Massive-Scale X-correlation and Relocation in California

Waldhauser & Schaff (2021)
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Repeating earthquakesHigh-resolution eq locations

https://nocalDD.ldeo.columbia.edu

Real-time monitoring

Waldhauser & Schaff (2008) Waldhauser (2009)

NCSN archive 1984-2021:
§ 1,000 stations
§ 1,000,000 earthquakes
§ 50 million seismograms
§ 20 million phase picks 

(mostly P)

Hypocenter relocation:
§ 100+ billion correlations
§ 7.5 billion correlation 

delay times (Cf >0.7) 
(P&S!)

§ 50 billion DD equations
§ Resolution: 10s – 100s 

meters (10-100 X 
improvement)

Cross-correlation Correlation delay timesNCSN network



Waveform correlation measurements

Decay of correlation coefficient with 
increasing hypocenter separation

Percentage of events with 
correlated seismograms



Waveform correlation measurements

Decay of correlation coefficient with 
increasing hypocenter separation

Percentage of events with 
correlated seismograms

Repeating earthquakes



Repeating earthquakes in California

250 m

140 m

Different fault 
strands

Repeating earthquakes rupture the same fault surface with similar magnitudes 
and focal mechanisms, thus generating close to identical seismograms. 

In plane view Across strike Time vs magnitude

§ Thought to represent stuck asperity in an otherwise creeping fault.
§ Potential to improve hazard assessment (Field et al., 2014), earthquake forecast 

(Zechar et al., 2012), and seismic monitoring capabilities.
§ Increasingly important role in the study of fault processes and behavior (recent review 

by Uchida and Bürgmann (2019).

creeping

stuck



Search for repeating earthquakes

Comprehensive, iterative, semi-automated search 
process:
§ Highly correlated seismograms (over long 

windows)
§ Similar magnitudes 
§ Co-located hypocenters (within source areas)

->  Isolated sequences only

Resulting catalog of repeating earthquakes:
7,713 sequences of a total of 27,675 events (1984-
2014)

Additional measurements for each sequence:
§ Differential magnitudes
§ CV of recurrence interval
§ Slip rates (following Nadeau & Johnson, 1998) 1984         1999         2014
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Temporal characteristics
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CV ~0

CV >>0

• Recurrence time coefficient of 
variation (CV):

§ periodic (CV~0)

§ random (CV>>0)

§ temporal clustering

§ piecewise periodic

CV =

1
N

Tri −Tr( )
2

i=1

N

∑

Tr



Geographical distribution

Waldhauser & Schaff (2021)



Moment vs. recurrence interval

Event early    0>Tr/Trav >0 Event late
Event smaller 0>M/Mav>0 Event bigger

§ When solid dots overlap, then early 
repeats have smaller magnitudes, 
late repeats have larger 
magnitudes

§ Consistent with Rubinstein et al. (2012) 
we find no support of time‐predictable 
model, in which the recurrence time 
scales with the size of the previous 
event. 

§ Evidence in support of the 
slip‐predictable model, where slip in an 
earthquake scales with time since the 
last event, suggesting that knowing the 
recurrence time of one event lets you 
predict its size. 

Waldhauser & Schaff (2021)



Fault slip rates and slip partitioning

Hayward

San Andreas
+

CsSF
SJB

Calaveras

Comparison with UCERF3 slip rates (Field et al 2014)
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§ Empirical slip rates following 
Nadeau & Johnson (1998):

Waldhauser & Schaff (2021)



Precision monitoring in Northern California (NCSN)
Repeater catalog Real-time relocation Unsupervised machine learning

Sawi et al. (2023)

Repeating earthquakes
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Big Data Problem

25 fold increase in number of events with 3+ station detections 

Variable CC thresholds set per template
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Statistics for each detected event: 
Average number of stations: 3.8, max 56 
Average number of template ids: 9.1, max 410 
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Growth in correlation measurements 
(e.g., N California)
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9 billion!



Evaluation of location robustness and uncertainties 

1. Bootstrap relative location errors and other 
statistical analysis.

2. Use known repeating events as ground truth:  
95% of DD catalog events within 10 m of 
repeaters.
95% of NCSN catalog events within 500 m.

3. Shift in new locations within uncertainties of 
original locations:
Std: dX = 0.7 km; dz = 1.4 km

4. Compare pick and x-corr delay times.
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Deep magnitude catalog for 10 years before the 
2019 M7.1 Ridgecrest event

• Machine learning (PhaseNet) 
and template matching 
(FastMatch) increases the 
number of earthquakes in the 
SCSN catalog by a factor of 
40!

• New catalog shows that 
strength of tidal modulation of 
seismicity along the fault is 
continuously increasing 
starting about 1.5 years before 
the mainshock.

4000 events 10,000 150,000

Beauce et al. (2023)

4,000 10,000 150,000



Beauce et al ( 2023)

10 years pre-shock

Beauce et al. (2023)

Increase in tidal modulation starting about 1.5 years before the mainshock



Amatrice sequence, Central Italy, 2016-2017
Evolution of catalogs

73k 82k 33k

440k 400k 900k

INGV real-time Chiaraluce et al. (2017) Michele et al. (2020)

Spallarossa et al. (2020)
Spallarossa et al. (2020)

Waldhauser et al. (2021) Tan et al. (2021)

Chiaraluce et al (2022)



Evolution of catalogs: 2016-2017 Central Italy sequence

Waldhauser et al. (2021)
Chiaraluce et al. (2022)

% of events with correlated 
waveforms



Fault geometry, structure, mechanics

Norcia

shear faults

⇃
⇃⇃↼↼

↼↼

Amatrice

Visso

Norcia
Amatrice
aftershock

Campotosto

detachment
faults

Latitude

Cross Section

Earthquake density plot showing narrow 
Mt. Vettore normal fault (red) and 
bookshelf faults truncated by the  
detachment horizon (blue).

Mt. Vettore normal fault Bookshelf structure

Map View

Waldhauser etal 2021



Fault zone width and inferred complexity

Waldhauser et al. (2021)

Perrin et al. (2021)



The 5 April 2024 Mw 4.8 New Jersey earthquake 

• 45 miles from Lamont

• 80+ media responses

• Record DYFI reports

• 150+ aftershocks 

• M3.7 aftershock on April 5, 6 PM



The 5 April 2024 Mw 4.8 New Jersey earthquake 
Boyd et al (2024)
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The 5 April 2024 Mw 4.8 New Jersey earthquake 

Beauce et al (2025)

• back-projection
• machine-learning
• template-matching
• cross-correlation 
• double-differencing

Þ 2,000 aftershocks 
vs. ~200 by USGS!



The 5 April 2024 Mw 4.8 New Jersey earthquake 

Kolawole et al (2025)



Axial Seamount (North Pacific)

Wilcock et al (2016) Waldhauser et al. (2020)

Wang et al (2024)

Impulsive seafloor 
Events (@EPR)

Tan et al (2016)



Picker performance: Kurtosis vs PhaseNet picks



Near-surface phase conversions/reflections
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Near-surface phase conversions/reflections

35

0 0.5 1

S003

Time (s)
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(except maybe for 
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contained entirely in 2014 and may be different because that year saw
intensifying drought, with sustained low injection rate. Thus, it is
inferred that changes in fluid content in the reservoir fracture network
are the cause for the observed changes in the spectral content of the
earthquakes over time, but by what mechanisms?

The null explanation for the correlation of clusters and injection
rate is a wave propagation effect: A change in attenuation (by scatter-
ing or intrinsic dissipation) occurs with changes in fluid content of the

reservoir between the earthquake source and the seismometer. Vapor
in fractures attenuates more effectively than fluid in fractures, and injec-
tion of cool water causes condensation, so lower attenuation (higher Q)
is expected during high injection rates (C1 in Fig. 3C). However, if
attenuation were the dominant cause of variations in spectra, then
spatial clustering should appear, as events with longer source-station
distances would accrue more high frequency loss [discussed further in
section S2.1 and fig. S2; for example, the study of Zucca et al. (30)].

A

B

C

D

Fig. 2. Machine learning methods. (A) Flowchart of the ML approach, from waveform to fingerprint. NMF and HMM methods both reduce dimensionality and remove
features common to all signals. (B) Example of the NMF decomposition of a spectrogram F into the product of matrices, dictionary U, and the activation coefficient
matrix diag(a)Vi (notation used in Materials and Methods). (C) In the HMM, each NMF activation matrix can be described as the product of a learned emissions matrix B
and a state sequence S. To get to the fingerprint, the algorithm counts every time (t1, t2,…) a certain state follows a previous state; brighter spots mean that one state
follows another more frequently. (D) Euclidean (-like) distances are calculated between each fingerprint pair, and then K-means produces J clusters.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Holtzman et al., Sci. Adv. 2018;4 : eaao2929 23 May 2018 3 of 7
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Unsupervised machine learning detects volcanic precursors

Holtzman, Paisley  et al. (2018)

Unsupervised spectral feature 
extraction and clustering (specUFEx) 

Kaiwen Wang et al (2024)

Mixed Frequency EarthquakesRegular Earthquakes



Interpretation: MFEs track movement of volatiles or magma

Kaiwen Wang et al (2024)

MFE

EQ



Real-time implementation: https://axialDD.ldeo.columbia.edu

Wang et al (SRL, 2024) 
Waldhauser et al (2020)

ML-DD real-time workflow



Opportunities and Challenges

Opportunities
• Large archives of continuous waveforms
• Decades of expert labeled data
• Unlimited compute power
• Widely used algorithms that take advantage 

of all the above
• New generation of deep-magnitude 

earthquake catalogs that enable research 
and discovery

• New era of high-precision seismic monitoring

Challenges
• Ensure reliability of catalog and products
• Raise awareness of limitations
• New generation of machine-seismologists
• Machine learning of seismogenic processes



Opportunities and Challenges

Opportunities
• Large archives of continuous waveforms
• Decades of expert labeled data
• Unlimited compute power
• Widely used algorithms that take advantage 

of all the above
• New generation of deep-magnitude 

earthquake catalogs that enable research 
and discovery

• New era of high-precision seismic monitoring

Challenges
• Ensure reliability of catalog and products
• Raise awareness of limitations
• New generation of machine-seismologists
• Machine learning of seismogenic processes

Most annoying new ML problem

• Event IDs



Thank you!


