Earthquake Phase Association

Seismic Event Monitoring Workflow: From Continuous Waveforms to Catalogs

Association

"Associate" picks – (i.e., determine number of events and distinct assignments)

Location

Then use **associated picks** in a least squares optimization routine to find best fit location

Posterio

$$\begin{aligned} \mathbf{r} \\ \theta(\mathbf{X}) \times \exp\left(-\frac{(\bar{T}_i^r(\mathbf{X}) - \bar{\tau}_i^r)^T C_{cov}^{-1}(\bar{T}_i^r(\mathbf{X}) - \bar{\tau}_i^r)}{2}\right) & \quad \bar{T}_i^r(\mathbf{X}) \text{ : travel time calculator} \\ \bar{\tau}_i^r \text{ : arrival} \\ & \quad \text{time} \end{aligned}$$

Location

r

Then use **associated picks** in a least squares optimization routine to find best fit location

Location

Then use **associated picks** in a least squares optimization routine to find best fit location

Phase Association connects waves with earthquakes.

- Number of earthquakes is unknown
- Events close in time have overlapping waveforms
- Recording network is irregular and varies with time
- Small earthquakes are only recorded on a few stations

ML-based picks differ from traditional picks, which motivates another look at.

Ambiguity of Phase Association

Backprojection: Time reverse picks and stack over stations (e.g., find moveout that fits observed picks)

Ambiguity of Phase Association

Longitude (°W)

Backprojection: Time reverse picks and stack over stations (e.g., find moveout that fits observed picks)

Ringdall and Kvearna (1989)

FIG. 1. Beam grid used in the generalized beamforming procedure for the purpose of associating regional phases from NORESS, ARCESS, and FINESA. The location of the three arrays is shown on the map.

1930

1988-077/08:20:00.000

Standard travel-time tables are used in these computations. Thus, for the *j*th beam, we obtain a set of time-aligned channels:

$$\bar{s}_j(T) = \{s_{ijk}(T + \tau_{ijk})\} \quad k = 1, \dots, K_{ij}; \quad i = 1, \dots, N$$
 (1)

TABLE 3						
LOCATION	ESTIMATES					

Event	Date (yy/mm/dd)	Time	Network		Mag.	No. of
No.			Lat.	Lon.	M_	phases
1	88/03/17	08.40.25.0	57.73	11.03	2.5	7
2	88/03/17	08.46.18.7	58.07	11.36	2.6	6
3	88/03/17	09.07.10.3	58.08	11.43	2.7	8
4	88/03/17	10.21.23.0	69.6	29.9	2.9	8
5	88/03/17	10.27.20.0	59.2	27.6	2.3	4
6	88/03/17	10.46.21.0	59.2	27.6	$<\!\!2$	2
7	88/03/17	11.18.48.0	59.3	27.2	2.3	5
8	88/03/17	11.54.41.0	65.8	24.7	$<\!\!2$	5
9	88/03/17	11.57.57.9	60.57	8.36	1.8	2
10	88/03/17	12.02.36.0	59.4	28.5	2.1	3
11	88/03/17	12.42.22.9	59.78	10.76	2.3	3
12	88/03/17	14.13.14.0	58.33	6.28	2.4	4
13	88/03/17	14.21.08.0	60.9	29.4	2.3	3
14	88/03/17	14.33.58.3	59.06	5.88	2.2	2
15	88/03/17	18.58.08.1	59.68	5.57	3.2	7

Location estimates obtained automatically from the beampacking pro ent network locations from the Helsinki and Bergen bulletins. Note the events with more than one detecting array.

Johnson et al., (1997)

 $Phs_i := {..., phs_{i-2}, phs_{i-1}, phs_i}.$

 $Hyp_i := {..., hyp_{i,j-2}, hyp_{i,j-1}, hyp_{i,j}},$

Formulate problem as a discrete assignment problem.

Johnson et al., (1997)

 $Phs_i := {..., phs_{i-2}, phs_{i-1}, phs_i}.$

 $Hyp_i := {..., hyp_{i,j-2}, hyp_{i,j-1}, hyp_{i,j}},$

$$A_{i,j} = \begin{cases} \frac{W}{(W+N_j)} \begin{vmatrix} \frac{Tobs_i - Tcal_{i,j}}{\Delta(r_{ij})} \end{vmatrix} & If; phs_i \text{ is associated with hyp}_j \\ 0 & Otherwise \end{cases}$$

Formulate problem as a discrete assignment problem.

(a)

18 -

19-

Latitude (°S)

22 -

23 -

24 -

72

(b)

71 70 69 68 Longitude (°W)

(a)

(a)

(b)

Arrivais

(a)

(b)

Arrivais

Johnson et al., (1997)

 $Phs_i := {..., phs_{i-2}, phs_{i-1}, phs_i}.$

 $Hyp_i := {..., hyp_{i,j-2}, hyp_{i,j-1}, hyp_{i,j}},$

$$A_{i,j} = \begin{cases} \frac{W}{(W+N_j)} \left| \frac{Tobs_i - Tcal_{i,j}}{\Delta(r_{ij})} \right| & If; phs_i \text{ is associated with hyp}_j \\ 0 & Otherwise \end{cases}$$

Algorithms

Norm = $\sum_{i,j} A_{i,j}$. $\boxed{\frac{n}{r}} \sum_{ij} A_{ij}$

Formulate problem as a discrete assignment problem..

Perspective

The association problem divides into three interconnected subsets problems. They are:

- 1. Identification
- 2. Location, and

3. Selection, or association,

Steps 2 and 3 will be looped through many times, as more arrivals associated with an event, the event relocated, etc..

A fourth step should probably be included, which can be roughly

as:

4. Clean-up.

$$A_{i,j} = \begin{cases} \frac{W}{(W+N_j)} \left| \frac{Tobs_i - Tcal_{i,j}}{\Delta(r_{ij})} \right| & If; phs_i \text{ is associated with hyp}_j \\ 0 & Otherwise \end{cases}$$

Formulate problem as a discrete assignment problem..

Algorithms

$$Norm = \sum_{i,j} A_{i,j}.$$
$$Norm_n^r = \sqrt{\frac{n}{(n-r)}} \sum_{ij} A_{ij}$$

Johnson et

al., (1997)

 $Phs_i := {..., phs_{i-2}, phs_{i-1}, phs_i}.$

 $Hyp_i := {..., hyp_{i,j-2}, hyp_{i,j-1}, hyp_{i,j}},$

The **Hungarian method** is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods. It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian

Arora et al., (2013)

> **Net-Visa**: Probabilistic method – possibly more "accurate", but difficult to implement, and still rule-based, iterative processing of data

Draelos et al., 2015)

Pedal (similar to GA; 1994**):** temporal energy stack, misfit tables, iterative processing logic/thresholding

$$g_{i,j} = P(d_{s_i}|E_{\omega}) \times P(d_{s_j}|E_{\omega}) \times Q_{s_i} \times Q_{s_j},$$

$$w_{i,j} = \frac{\frac{\sqrt{2}}{3}N_{tt}}{(\sigma_{tt,i,\omega}^2 + \sigma_{tt,j,\omega}^2)^{1/2}} + \frac{\frac{1}{6}N_{az}}{\sigma_{az,i,\omega}}$$

$$+ \frac{\frac{1}{6}N_{az}}{\sigma_{az,j,\omega}} + \frac{\frac{1}{6}N_{sh}}{\sigma_{sh,i,\omega}} + \frac{\frac{1}{6}N_{sh}}{\sigma_{sh,j,\omega}},$$
and
$$r_{i,j}^2 = \frac{[(T_i - T_j) - (p_{tt,i,\omega} - p_{tt,j,\omega})^2]}{\sigma_{tt,i,\omega}^2 + \sigma_{tt,j,\omega}^2}$$

$$+ \frac{(az_i - p_{az,i,\omega})^2}{\sigma_{az,i,\omega}^2} + \frac{(az_j - p_{az,j,\omega})^2}{\sigma_{az,j,\omega}^2},$$

$$+ \frac{(sh_i - p_{sh,i,\omega})^2}{\sigma_{sh,i,\omega}^2} + \frac{(sh_j - p_{sh,j,\omega})^2}{\sigma_{sh,j,\omega}^2},$$

10

(a)

Е

Ross et al.,

(2019)

PhaseLink: RNN based association

• Train on synthetic examples and learn solution

1. Collect picks over a seismic network **Brief History** Ë Station latitude Ross et al., 33.56 33.57 33.59 33.35 Station lat. 33.57 33.49 33.49 (2019) -116.67 -116.53 -116.22 -116.60 -116.76 -116.56 Station lon. -116.60 Time (sec) 4.56 4.84 4.93 5.11 5.23 5.62 5.65 Phase type P P S S P s P Moving RNN window with 500 picks 2. In moving window, predict which picks are from same event as root PhaseLink: RNN based Root pick association RNN From same event as root pick? 1 0 1 • Train on synthetic 3. Aggregate predictions for all windows Event examples and learn Moving solution RNN window x = false picks A, B, C, ... = real picks new detections Backward 1 root pick 1 aggregation 4. Pick sequence is fully associated 0 Time 0

Distance (km)

McBrearty et al., (2019)

Use **Backprojection** and **Integer Linear Optimization**

Use Backprojection and Integer Linear Optimization

$$\max_{x} c^{T} x$$

s.t. $Ax \leq b$
 $x \in \{0, 1\}$
 $\{A, b, c\} \xleftarrow{Algs. S1-S3} \{\mathcal{D}, \mathcal{S}\},\$

- Explicit optimization (more robust than Hungarian algorithm)
- Still must determine sources/scaling issues

McBrearty et al., (2019)

Use **Backprojection** and **Integer Linear Optimization**

 Explicit optimization (more robust than Hungarian algorithm)

• Still must determine sources/scaling issues

E-step:

$$\gamma_{ik} = rac{\phi_k \mathcal{N}(\mathbf{x}_i | \mu_k, \mathbf{\Sigma}_k)}{\sum_{k=1}^{K} \phi_k \mathcal{N}(\mathbf{x}_i | \mu_k, \mathbf{\Sigma}_k)}$$

M-step:

1. Effective number of picks assigned to the *k*-th earthquake:

 $N_k = \sum_{i=1}^N \gamma_{ik}$ $\phi_k = \frac{N_k}{N}$

2. Earthquake location, origin time, and magnitude of the k-th earthquake:

$$egin{aligned} & \min_{(x_k,y_k,z_k,t_k)} l(x_k,y_k,z_k,t_k) = \sum_{i=1}^N \gamma_{ik} \mathcal{L}\left(t_i,\hat{t}_{ik}(x_k,y_k,z_k,t_k)
ight) \ & m_k = rac{1}{N_k}\sum_{i=1}^N \gamma_{ik} \mathcal{F}_a'(a_i,d_{ik}) \end{aligned}$$

• "Iteratively" solve association and event location (i.e., "soft assignment")

Zhu et al.,

GaMMA: Bayesian

Gaussian Mixture

model association

(unsupervised

clustering)

2022

3. Theoretical travel time, amplitude, and statistics of residuals:

$$\mu_k = \begin{bmatrix} \hat{t}_{ik} \\ \hat{a}_{ik} \end{bmatrix} = \begin{bmatrix} \mathcal{F}_t(x_k, y_k, z_k, t_k) \\ \mathcal{F}_a(m_k, d_{ik}) \end{bmatrix}$$
$$\boldsymbol{\Lambda}_k^{-1} = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^T$$

Zhu et al., 2022

GaMMA: Bayesian Gaussian Mixture model association (**unsupervised clustering**)

• "Iteratively" solve association and event location (i.e., "soft assignment")

Time [s]

2

Association predictions are conditioned on source predictions
Why GNNs?

Convolutional Neural Networks

Effective for Euclidean data (e.g., time series, images)

Relies on the distribution and type of spatial features (e.g., edges, shapes, gradients).

Recurrent Neural Networks

Effective for Euclidean data (e.g., time series, text)

Relies on the timing/sequencing and strength of temporal signals.

Graph Neural Networks

Effective for non-Euclidean data (e.g., graphs, sensor arrays)

Relies on local information passing between nodes.

Relaxed conditions on the spatial regularity of data.

GNN: Architecture

X : Spatial graph S : Station graph

(a)

(c)

Strengths

- Input feature is the misfit between observed and theoretical arrivals
- Doesn't have to "learn" velocity model (unlike PhaseLink)

• "Knows" the relative position of stations, and weights them differently (unlike back-projection)

Strengths

- Input feature is the **misfit** between observed and theoretical arrivals
- Doesn't have to "learn" velocity model (unlike PhaseLink)
- "Knows" the relative position of stations, and weights them differently (unlike back-projection)

Station Graph

8-nearest-neighbo rs

15-nearest-neighbo

rs

0.0

9680

9700

earthquake on **Calaveras Fault**, and obtained P and S wave associations

9780

62520

62540

62560

Time (s) 62580

62600

62620

S wave associations

• Continuous space-time output

• Can handle even closely overlapping events and many false/noisy picks

M1, Bay Area

M2, Bay Area

M3, Bay Area

M1, Mendocino Triple Junction

M2, Mendocino Triple Junction

M3, Mendocino Triple Junction

M1, California-Nevada Border

M2, California-Nevada Border

M3, California-Nevada Border

Comparisons of Associators

~250 ~100\$ieVents per dav

~1/4 scale, 25 stetioors events per dav

Spatial Localization

45.25

45.00

44.75

45.50 45.75 46.00 46.25

Less scatter in GENIE catalog

Spatial Localization (Full catalog)

Event Comparison: Number of Events

(Using events with spatial window: 150 km) (Temporal window: 8 s)

Increased detection rate to 1.5x
PhaseWorm catalog

• Re-detected ~85% of PhaseWorm catalog

LP events in Earthworm catalog

• VT events were well detected, but LP events harder to detect by PhaseWorm

- Increased rate of S vs. P phase picks
- Earthworm nucleates events based on P waves only

(Retailleau et al., 2022)

LP events in Earthworm catalog

• VT events were well detected, but LP events harder to detect by PhaseWorm

- Increased rate of S vs. P phase picks
- Earthworm nucleates events based on P waves only

Kahramanmaraş Aftershock Sequence

GaMMA

For this data set, GaMMA finds more events, while GENIE associates more phase per avant

Becker et al. (2024)

Influence of adding random picks

Α

For this data set, **GaMMA** seems more prone to mis-association.

Becker et al. (2024)

Associator Comparisons

• Tested performance of five different associators (GaMMA, PhaseLink, REAL, GENIE, PyOcto) on synthetic scenarios

• Found similar performance for low complexity cases, but large differences for high complexity data

Puenta et al.,

Associator Comparisons

 Tested performance of five different associators (GaMMA, PhaseLink, REAL, GENIE, PyOcto) on synthetic scenarios

 Found similar performance for low complexity cases, but large differences for high complexity data

Events: 500 0.98 0.98 0.95 1.0 +0.87 0.71 0.5 0.0 0.99 0.98 0.95 1.0 + 0.85 0.75 0.5 0.0 0.98 0.98 0.95 1.0 0.54 0.5 . 0.19 0.0 ,0^{cto}10 NNA 10 affal OD Associators

Puenta et al.,

Longitude

Depth [km]

Score E

Associators applied to dense nodal arrays

• Tested performance of four different associators (GaMMA, PhaseLink, REAL, GENIE) on data from Rock Valley (52 nodes + 9 regional broadband sensors) and ~1800 geophones at LASSO

Associators applied to dense nodal arrays

Northern California

Northern California

~1000 stations from many networks: NC, BK, PN, BG, UW, NN

Picks

Average: 240,000 picks per day

S-waves 117,000 picks per day

 Collaboration with Weiqiang Zhu to obtain PhaseNet picks

Picks

Average: 240,000 picks per day

P-waves 121,000 picks per day

S-waves 117,000 picks per day

 Collaboration with Weiqiang Zhu to obtain PhaseNet picks

Initial Catalog (2023)

Example Catalog

Comparison of NCEDC (orange) and our initial catalog (blue)

Example Catalog

Comparison of NCEDC (orange) and our initial catalog (blue)

Example Catalog

Comparison of NCEDC (orange) and our initial catalog (blue)

Increased Catalog (2023)

Event Counts

• 2.8x NCEDC catalog

• 5.3x NCEDC catalog

Picks

Average: 240,000 picks per day

P-waves 121,000 picks per day

S-waves 117,000 picks per day

3 events

Collaboration with Weiqiang Zhu to obtain PhaseNet
 picks

Picks

Average: 240,000 picks per day

P-waves 121,000 picks per day

S-waves 117,000 picks per day

GENIE

5 events

Collaboration with Weiqiang Zhu to obtain PhaseNet
 picks

Picks

GENIE events 800 700 600 500 400 300 200 100 -0 35400 35600 35800 36000 36200 36400

Average: 240,000 picks per day

P-waves 121,000 picks per day

S-waves 117,000 picks per day

> 13 events

 Collaboration with Weiqiang Zhu to obtain PhaseNet picks

Mw 6.0 Napa Earthquake, 2014

San Ramon Swarm, 2015

Bad Catalog

Bad Catalog

Training data too many events

Also – set of associated picks in training, too random.

Bad Catalog

Training data too many events

Also – set of associated picks in training, too random.

ੀ main 👻 ਿ 2 Branches 🛇 3	Tags Q Go to file	t Add file 👻	<> Code •	About	٤	
imcbrearty Update train_double	_difference_model.py	9299a6b · last week	1,213 Commits	A Graph Neural Network (G earthquake phase associat	NN) based or and spatio	
BSSA	Add BSSA	Add BSSA 2 years ago			n model.	
Code	Update config.yaml		last week	· MIT license		
DoubleDifference	Update train_double_difference_mo	odel.py	last week	∽ Activity		
LICENSE.md	Create LICENSE.md		3 years ago	☆ 41 stars		
🗅 README.md	Update README.md		3 months ago 양 9 forks			
口 README			Ø∷≣	Releases		
				⊘ 3 tags		
GENIE : Graph E	arthquake Neural Interp	retation Eng	gine	Create a new release		
A Graph Noural Notwork (GNN)	hased earthquake phase associator and spatio	-temporal source localia	zation	Packages		
model.				No packages published		
model.				Dublich vour first neekone		
model. The paper associated with this	work is given at			Publish your first package		

(1). Set region and station file

(2). Set velocity model

(3). Compute travel times

(4). Choose synthetic data parameters and train

(5). Apply

GENIE / Code / config.yaml				
o imcb	rearty Update config.yaml			
Code	Blame 90 lines (73 loc) · 6.42 KB 🔐 Code 55% faster with GitHub Copilot			
1	name_of_project: 'Mayotte'			
2	<pre>num_cores: 1 # How many cores would you like to use for travel time calculations? (it w</pre>			
3	vel_model_ver: 1 ## Which travel time version to save when running calculate travel tim			
4				
5	## Note, when running continuous days processing a number of parameters are also set in			
6				
7	latitude_range: [18.8, 20.3] # Latitude range of the region that will be processed			
8	longitude_range: [-156.1, -154.7] # Longitude range of the region that will be processe			
9	depth_range: [-40000, 5000] # Note: depths are in meters, positive above sea level, neg			
10	time_range: # This sets up the Catalog and Pick files to have these years initialized			
11	start: '2018-01-01'			
12	end: '2023-01-01'			

```
[In [14]: z = np.load('stations.npz')
[In [15]: list(z.keys())
Out[15]: ['locs', 'stas']
[In [16]: print(z['locs'][0:10])
ΓΓ
   39.04446 -123.541092 687.
    39.11709 -123.70883
                          144.
   39.12745 -122.82347 858.
 Ε
   39.12997 -123.07651 1077.
   39.133171 -123.46788
                        370.
   39.17902 -122.63618
                        975.
   39.1853 -123.2109
                          193.
   39.20074 -123.63514
                        327.
 Ε
                                    ]
   39.205704 -123.301003 654.
 Γ
 Г
    39.30477 -123.19748
                        264.7
                                   11
```

[In [17]: print(z['stas'][0:10])
['GHO.NC' 'GBL.NC' 'GHGB.NC' 'GCWB.NC' 'GMR.NC' 'GSR.NC' '79666.CE'

'GNR.NC' 'GWR.NC' 'BARR.BK']

```
[In [30]: z = np.load('3d_velocity_model.npz')
[In [31]: list(z.keys())
Out[31]: ['X', 'Vp', 'Vs']
[In [32]: print(z['X'][0:10,:])
[[ 3.94651464e+01 -1.26163064e+02 -4.14937689e+04]
[ 3.94652337e+01 -1.26162896e+02 -4.09940675e+04]
[ 3.94653211e+01 -1.26162896e+02 -4.04943661e+04]
[ 3.94654085e+01 -1.26162729e+02 -4.04943661e+04]
[ 3.94654085e+01 -1.26162561e+02 -3.99946646e+04]
[ 3.94654958e+01 -1.26162393e+02 -3.94949631e+04]
[ 3.94655831e+01 -1.26162226e+02 -3.89952615e+04]
[ 3.94656705e+01 -1.26162058e+02 -3.84955599e+04]
[ 3.94657578e+01 -1.26161891e+02 -3.79958582e+04]
[ 3.94659323e+01 -1.26161723e+02 -3.74961565e+04]
[ 3.94659323e+01 -1.26161556e+02 -3.69964547e+04]]
```

[In [33]: print(z['Vp'][0:10])
[8027.197 8028.1963 8029.197 8029.8975 8029.9995 8029.9995 8029.9995
8029.9995 8029.9995 8030.2964]

```
[In [34]: print(z['Vs'][0:10])
[4509.899 4510.299 4510.8984 4511.0005 4511.0005 4511.0005 4511.
4511. 4511. 4511.2964]
```

Set velocity model

Train travel time PINN neural network

Accurate even for 3D velocity models

Train travel time PINN neural network

Set scale and event rate dependent training parameters

Set training data

Prediction params

These parameters should somewhat scale with the size of the application
kernel_sig_t: 3.5 # Kernel to embed arrival time – theoretical time misfit (
src_t_kernel: 3.5 # Kernel of origin time label (s)
src_t_arv_kernel: 3.5 # Kernel for arrival association time label (s)
src_x_kernel: 30000. # Kernel for source label, horizontal distance (m)
src_x_arv_kernel: 30000. # Kernel for arrival-source association label, hori
src_depth_kernel: 30000. # Kernel of source label in Cartesian projection, v

Training params list 2

spc_random : 3500 # Spatial scale to randomly remove true picks from station sig_t : 0.03 # Percent of travel time error on pick times (e.g., 3%) spc_thresh_rand : 3500 # Spatial scale to randomly shift threshold distance min_sta_arrival : 6 # Min number of unique stations required for a positive coda_rate : 0.1 # Percent of picks with false coda picks (e.g., 3.5%) coda_win : [0, 10.0] # Window that code picks can occur over (e.g., 25 s) max_num_spikes : 2 # Number of possible network wide spikes per window T of spike_time_spread : 0.15 # The temporal spread of the network wide spikes s_extra : 0.0 # If this is non-zero, it can increase (or decrease) the total use_stable_association_labels : *True* # This flag only allows positive associ thresh_noise_max : 2.5 # ratio of sig_t*travel time considered excess noise min_misfit_allowed: 1.0 # The minimum time (in seconds), beneath which, diff total_bias: 0.03 ## Total possible bias on travel times (uniform across stat # training_params_2 = [spc_random, sig_t, spc_thresh_rand, min_sta_arrival,

Training params list 3

dist_range : [20000, 225000] # This is the distance range over which to simu max_rate_events : 200 # 350 # 450 # Average rate of events per T window of t max_miss_events : 204 # 225 # 325 # Average rate of missed picks per station max_false_events : 2.25 # Now by default represents the ratio of false picks miss_pick_fraction : [0.05, 0.35] # False # Average ratio of missed picks (i T : 10800 # Time window to simualate synthetic data. More variability occurs dt : 30 # Time resolution to allow synthetic data parameters to vary in time tscale : 3600 # Time scale that synthetic data parameters vary in time, duri n_sta_range : [0.75, 1.0] # The ratio of possible stations from full set con use_sources : False

use_full_network : False

fixed_subnetworks : True ## If True, this uses realistic sets of stations av use_preferential_sampling : True ## This concentrates more of the samples ar use_extra_nearby_moveouts : True ## This up-samples the amount of sources wi use_shallow_sources : False