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Signal Processing

* A signal in time (length

N
gian be represented by a discrete
vector,

Fourier transform

f(&) = / flz) e da. (Equ)

wikipedia

* Or instead, as a set of N discrete

Fourier transform Flz] e CN

coefficients,
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Advantages of FFT representation

- Each coefficient, F[z|(w) € C has some “global” x
knowledge of

 Most real world signals are “bandlimited” — son < N coefficients control most of
variance



Advantages of FFT representation

- Each coefficient, F[z|(w) € C has some “global” x
knowledge of

 Most real world signals are “bandlimited” — son < N coefficients control most of
variance

* The basis of FFT is ordered, from low to high
frequency



Assumption of FFT

* The “basis” we decompose with is harmonic in
time

 Adjacent points in time should behave
“similarly”



Assumption of FFT

* The “basis” we decompose with is harmonic in
time

 Adjacent points in time should behave
“similarly”

« Large difference between nearby points implies: high energy signal, non-smooth, high
frequency, etc.



Graph Signal Processing

 How do we represent data on a
graph?

V : Vertex (or node)

set .
£ . Edge set (or Adjacency
matrix)



Graph Signal Processing

 How do we represent data on a
graph?

+Onone hand, itis z € RV

just
For G=(V,€)
graph

V : Vertex (or node)

set .
£ . Edge set (or Adjacency
matrix)



Graph Signal Processing

 How do we represent data on a

graph?
+Onone hand, itis z € RV
just
For G= (V&)
graph
Proble
m
» This makes no use of edges
(structure)
» Cant use FFT directly, since now V' : Vertex (or node)
“adjacent points” are no longer linearly set .
ordered £ . Edge set (or Adjacency

matrix)



Graph Signal Processing: Graph FFT

*Any graph G = (V,€)

Has an intrinsic (orthonormal)
basis

V : Vertex (or node)

set .
£ . Edge set (or Adjacency
matrix)



Graph Signal Processing: Graph FFT

*Any graph G = (V, &)

Has an intrinsic (orthonormal)

basis
o .‘ ®
... .: @
(0 0 0 1 0 1043 (0O 1 1 1
0001 1 010 1 01 1
0001 O 1 0 1 O RN R
(1110 | &350, 1110
wolfram - adjacenci
es
L=D-A V : Vertex (or node)
D : Diagonal matrix set .
5 £ . Edge set (or Adjacency

A : Adjacency matrix :
: matrix)



Graph Signal Processing: Graph FFT

*Any graph G = (V, &)

Has an intrinsic (orthonormal)

basis
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L=UAUT L : Laplacian

U; € RVl : Eigenvectors

: Vertex (or node)

set .
. Edge set (or Adjacency

matrix)



Graph FFT Basis

: Vertex (or node)

set .
. Edge set (or Adjacency
matrix)

L=UAUT U, € RIVI . FEigenvectors
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Fig. 2. Time graph: Cycle graph ..

Ortega et a.,
2018



Graph FFT Basis

. Vertex (or node)

set ,
- Edge set (or Adjacency
matrix)
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Edge set (or Adjacency
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Graph FFT Basis

V . Vertex (or node)

set .
£ . Edge set (or Adjacency
matrix)

Eigenvector 3 Eigenvector 8
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Graph FFT Basis

: Vertex (or node)

set ,
- Edge set (or Adjacency
matrix)
Deformed
sphere:

Low to
high
frequency
And

structure
aware



Graph FFT Basis
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Why Graph Neural Networks?

Convolutional Neural Networks

: i . , _ Effective for Euclidean data
* CNN’s let us “learn” mappings on regular grid (e.q., time series, images)

domains

Image
(Feature Maps)

Recall convolution
theo rem : Input Image

f(t) xg(t) = iFFT|F(w)G(w)] ‘L :

Leamable Weights
(Image Filters)

Relies on the distribution and
type of spatial features (e.g.,
edges, shapes, gradients).



Why Graph Neural Networks?

* CNN's let us “learn” mappings on regular grid
domains

Recall convolution
theorem:

£(t) * g(t) = iFFT[F(w)G(w)]

« Assumption: multiple layers of “convolution” permits
functions that are expressible with ~low order
frequency content in Fourier basis

Convolutional Neural Networks

Effective for Euclidean data
(e.g., time series, images)

Image
(Feature Maps)

Output Image

Input Image

—

Leamable Weights
(Image Filters)

Relies on the distribution and
type of spatial features (e.g.,
edges, shapes, gradients).



Why Graph Neural Networks?

Graph Neural Networks

Effective for non-Euclidean data
(e.g., graphs, sensor arrays)

Graph
convolution:
 Rather than using eigenvectors directly (global FFT e
. Node Features; x;
representation), [::;h:;ﬁ:u.r:s; ]

Use local message passing (local representation)

Graph Convolution

Incoming
(11| my = fa(ny, ey) Messages

Updated
Node Feature

[2]] % = ge(x;, Z my)

Learnable Weights
(Fully Connected Networks; f3, gg)

Relies on local information passing
between nodes.

L=D-4A Relaxed conditions on the spatial
L =UANUT U; € RIVI . FEigenvectors regularity of data.



Why Graph Neural Networks?

Graph
convolution:

 Rather than using eigenvectors directly (global FFT
representation),

Use local message passing (local representation)

« After several rounds of message passing, will have
“access” to functions supported by graph Laplacian
eigenvector basis

L=D-A
I — UAUT U, € RVI: Bigenvectors

Graph Neural Networks

Effective for non-Euclidean data
(e.g., graphs, sensor arrays)

Input Graph Signal

Node Features; x;
Neighbor Features; n

Edge Features; ey

Graph Convolution

Incoming

Updated

[21] % = ge(xi, Z my) Node Feature

Learnable Weights
(Fully Connected Networks; fs, gg)

Relies on local information passing
between nodes.

Relaxed conditions on the spatial
regularity of data.



Why Graph Neural Networks?

Convolutional Neural Networks

Effective for Euclidean data
(e.g., time series, images)

Image
(Feature Maps)

m Output Image
Input Image h 9 )
oo
2 \\ S
! o T

|
'
Leamable Weights
(Image Filters)

Relies on the distribution and
type of spatial features (e.g.,
edges, shapes, gradients).

Recurrent Neural Networks

Effective for Euclidean data
(e.g., time series, text)

Output Sequence
Input Sequence T T T Hidden States

Learnable Weights . G(UX + Vh + b)
(Dense Matrices; U, V, b)

Relies on the timing/sequencing
and strength of temporal signals.

Graph Neural Networks

Effective for non-Euclidean data
(e.g., graphs, sensor arrays)

Input Graph Signal

Node Features; x;
Neighbor Features; n;
Edge Features; ey

Graph Convolution

Incoming
(11| my = fo(ny, ey) Messages
Updated
[2]| % = gs(x:, Z my) Ngde Feature

Learnable Weights
(Fully Connected Networks; fs, gg)

Relies on local information passing
between nodes.

Relaxed conditions on the spatial
regularity of data.



Graph Examples

Common examples:

(@) Molecule (b) Mass-Spring System
oS0 e
™ /4 \
o Ne LA S
y | - ‘f
(©) n-body System (d) Rigid Body System
N\ ¥ '\
& '/ \ ’{7/
(e) Sentence and Parse Tree (f Image and Fully-Connected Scene Graph
' @
Pl = 24 P
PN w ‘A o S| RE
The brown . P $ 7 4
dog jumped. The jumped r { - A\/ RS
’f \ <T — />
brown dog b ,‘,

Sensor networks, social networks, smooth irregular surfaces

Less common examples:

Molecules, multi-particle simulation, sparse matrices, etc.

Battagilia, et al.,
2018



Graph Neural Networks

 Technically, could choose fixed “filters” to apply for
graph convolution, but would be hard to hand
engineer

» Rather, it's easier to “learn” filters, and process
data in a higher-dimensional (lifted) space



Graph Neural Networks

Message
Passing:

The general form of a graph convolution layer is given by

A = ¢299(R{F) POOL{¢™9(h'", i, 2) | j € N(i)})

J

Node and edge Learnable

features: weights:

h € RE bmsg : RE1 — REC

h: node feature vector Gagyg RE1+EK2 __ RES

e;; : edge feature (e.g., offset vector) ¢ : Shallow fully connected neaural networks



Graph Neural Networks

Message
Passing:

The general form of a graph convolution layer is given by

RETD = ¢o99 (R POOL{¢™9 (WM e;j,2) | j € N(5)})

1). For each node i, “collect” all neighboring nodes of node i

2). Transform each neighboring latent vectors by phi_msg

4

(1).

(2).

(3). POOL (mean, max, or sum pool) over node dimension

(4). Concatenate with latent vector of node i from previous layer
(5).

5). Transform concatenated vector with phi_agg



GNN: Properties

Message
Passing:

X' =D 2AD '?x@, (GCN; Kipf and Welling,
2016)

» Can also be expressed in matrix notation using Adjacency,
but this limits perspective and extensions



GNN: Properties

Message
Passing:

* Information transfers locally, but
expands to further “hops” away with
every convolution layer

« Can handle very large, sparse graphs
well

Input Graph Signal

Node Features; x;
Neighbor Features; n;

Edge Features; ey

Graph Convolution

Incoming
(11| my = fo(ny, ey) ] Messages

Updated
Node Feature

[21| »x = gelx;, Z m,)]

Learnable Weights
(Fully Connected Networks; fs, gg)



GNN: Properties

Message
Passing:

* Information transfers locally, but
expands to further “hops” away with
every convolution layer

« Can handle very large, sparse graphs
well

* At each layer of GNN, all nodes
features hectors,V ,are
updated based on self, and neighbors

Input Graph Signal

Node Features; x;
Neighbor Features; n;

Edge Features; ey

Graph Convolution

Incoming
(11| my = fy(ny, ey) ] Messages

Updated
Node Feature

[2]] % = QelX;, m])]

Learnable Weights
(Fully Connected Networks; fg, gg)



GNN: Properties

Message
Passing:

* Information transfers locally, but
expands to further “hops” away with
every convolution layer

« Can handle very large, sparse graphs
well

« Both the features and graph structure
have to be used to guide learned function

Input Graph Signal

Node Features; x;
Neighbor Features; n;

Edge Features; ey

Graph Convolution

Incoming
(11| my = fy(ny, ey) ] Messages

[21| »x = gelx;, Z m,)] upCec

Node Feature

Learnable Weights
(Fully Connected Networks; fg, gg)



GNN: Properties

Message
Passing:
Table 1
Node feature vector composition for the Graph Neural Network.
Feature Description Dimensions
Center coordinates Spatial position of the node (x, y, z) 3
Cluster dimensions Size of the cluster (a, b, ¢) 3
Number of points Total points in the cluster |
Node degree Edges connected to the node 1
Closeness centrality Inverse sum of shortest distances between the node and all others 1
Eigenvector centrality Measure of the node’s influence based on its connections’ quality and quantity 1
Pagerank Importance of the node in the network based on its links and the significance of 1

its neighboring nodes

Phase Representation for phase (Solid = 1, Pore = 0, and vice versa) 1

Prediction of effective elastic moduli of rocks using Graph Neural

* Both the features and graph structure Networks
have to be used to gu|de Iearned funCt|On Jaehong Chung **, Rasool Ahmad ", WaiChing Sun ¢, Wei Cai ", Tapan Mukerji ¢



GNN: Properties

Message
Passing:
Table 1
Node feature vector composition for the Graph Neural Network.
Feature Description Dimensions
Center coordinates Spatial position of the node (x, y, z) 3
Cluster dimensions Size of the cluster (a, b, ¢) 3
Number of points Total points in the cluster |
Node degree Edges connected to the node 1
Closeness centrality Inverse sum of shortest distances between the node and all others 1|
Eigenvector centrality Measure of the node’s influence based on its connections’ quality and quantity 1
Pagerank Importance of the node in the network based on its links and the significance of 1

its neighboring nodes

Phase Representation for phase (Solid = 1, Pore = 0, and vice versa) 1

Prediction of effective elastic moduli of rocks using Graph Neural
Networks

Jaehong Chung **, Rasool Ahmad ", WaiChing Sun ¢, Wei Cai ", Tapan Mukerji ¢

* The graph structure can be the
feature



GNN: Properties




GNN: Properties

Message
Passing:

Each convolution
expands effective
neighborhood

1 Hop Neighborhood 2 Hop Neighborhood



GNN: Considerations

1). Diameter of graph

(longest, shortest path distance; e.g.,
Distance between most separated
nodes)
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GNN: Considerations

1). Diameter of graph

(longest, shortest path distance; e.g., e - - S
Distance between most separated - = :
nodes) 40 ]
20 )
If long-range interactions oS

needed, many ideas proposed:

(i). Add “virtual nodes” connected ~60 1
to all nodes, (ii). Use global ™
summary features, (iii). Add more 4o e g . = man o

edges to adjacency (e.g.,
expander graphs), (iv). Create
multi-scale, multi-resolution
graphs...



GNN: Considerations

2). Edge features
(Offset vectors between adjacent
nodes can be used to infer local

curvature)
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GNN: Considerations

2). Edge features
(Offset vectors between adjacent

nodes can be used to infer local
curvature)

R = 4999 (B POOL{¢™9(hP), e,;,2) | j € N(i)})

J

e;; : edge feature (e.g., offset vector)



Considerations

GNN
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GNN: Limitations

1). Over-smoothing : Since message passing iteratively shares information, it roughly
emulates a diffusion/smoothing process.

To keep discriminative ability of nodes of deep GNNs, “residual” connections necessary
(Hamilton et al., 2017)



GNN: Limitations

1). Over-smoothing : Since message passing iteratively shares information, it roughly
emulates a diffusion/smoothing process.

To keep discriminative ability of nodes of deep GNNs, “residual” connections necessary
(Hamilton et al., 2017)

R = 4999(hM POOL{¢™*9(h\") e;5,2) | j € N(3)})

Node and edge Lee.lrnable
’;egtwes: %glg,ghﬁgx'l __, RK2

) . K1+Ko K3
h: node feature vector Pagg * R > R



GNN: Limitations

1). Over-smoothing : Since message passing iteratively shares information, it roughly
emulates a diffusion/smoothing process.

To keep discriminative ability of nodes of deep GNNs, “residual” connections necessary
(Hamilton et al., 2017)

2). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size
representation latent vector, which limits expressiveness of representation. Long-range
interactions are weak.

Can improve performance with more well-interconnected (sparse) graphs, e.g., expander
graphs.



GNN: Limitations

2). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size
representation latent vector, which limits expressiveness of representation. Long-range
interactions are weak.

Can improve performance with more well-interconnected (sparse) graphs, e.g., expander

graphs.
I«zfiz»I
ahe” |y
s : d kL
“:f’g g@ﬁ’
pAr
Deac et al., 2022; “Expander Graph Cayley graphs,

Propagation” wikipedia



GNN: Limitations

2). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size
representation latent vector, which limits expressiveness of representation. Long-range
interactions are weak.

Li et al., 2020; “Multipole Graph Neural Hierarchical
Operator” GNNs



GNN: Setup

[1]. Choose GNN architecture

(number of layers, latent dimension of [4]. Choose training data
features, (i.e., synthesize data, graph, and label
Edge features available). pairs)

_ ' The graph and input features typically
[2]. Choose input h:ieV both vary for each input

field,

[3]. Choose label targets
(either: node-level, graph-level, edge-level
predictions)

y; € R: i€V, (Node level)
y € R, (Graph level)
yij : (1,7) € &, (Edge level)



GNN: Setup

[1]. Choose GNN architecture
(number of layers, latent dimension of
features,

Edge features available).

[2]. Choose input Y :ieV
field,

[3]. Choose label targets
(either: node-level, graph-level, edge-level
predictions)

y; € R: i€V, (Node level)
y € R, (Graph level)
yij : (1,7) € &, (Edge level)

[4]. Choose training data
(i.e., synthesize data, graph, and label
pairs)

The graph and input features typically
both vary for each input

Tuples of {(V, &, h°, y), for j datapoints}



GNN: Limitations

| e - R

“la T D T
1). Diameter of graph w W et
(longest, shortest path distance; e.g., o — ¥ 4,3 ‘ \ > o
Distance between most separated N P 7 %

nodes)

2). Over-smoothing : Since message

passing iteratively shares information, it
roughly emulates a diffusion/smoothing
process.

-150 -100 -50 50 100

3). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size
representation latent vector, which limits expressiveness of representation. Long-range
interactions are weak.

150



Application: Earthquake Location

Maximum likelihood
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Application: Earthquake Location

Maximize posterior

nrohahitity

‘cou

(t+T(x,8) — 7:) Con(t + T(x,s

plad) = (:xp( -

o~

- sastis SR
x: source location 8,1 17" station

[: origin time 7,2 pick time on i*" station




Input Graphs

Station Spatial
Graph Graph

2005/10/10 (236 stations) 2005/10/10 (250 source nodes)
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GNN: Architecture

Input
Data ~_
~
\\
SxX p | X | ===~ * |Prediction(x,, X)
. [1] 2] 3] [1]
////

Travel
Times

»  Learnable Mapping X : Spatial graph

S : Station graph

------ +  Non-learnable

—_—— — — Fxtra Information




GNN: Architecture

Input
feature:

h;t (s;, ) = exp (—

(to + Tk(s;, @) — Tf)2>

2
20}

pre-stack BP
metric




GNN: Architecture

Cartesian Product

graph:
S x X | Nodes: all pairs of
(e ¥)

Edge Exexs=1{(i,5)z; € N(zi) A (s5 = 8:)}

> Escsx =1{(5,5) | 85 EN(8:) A (25 = x4) }




GNN: Architecture

Cartesian Product
graph:

S x X | Nodes: all pairs of
(e ¥)

Edge Exexs=1{(i,5)z; € N(zi) A (s5 = 8:)}

S:
Esesx =1{(6,5) | 85 € N(si) A (x5 = @) }
EO I_I = « Cartesian product, Kronecker
product,
Gp 9o Strong product, Lexicographic
product...
Kadambari et al., 0

2021



Forward Map

Cartesian Product Graph

2005/10/10 (236 stations) 2005/10/10 (250 source nodes)

Source prediction
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Results on Synthetic Data

Simulated many realizations
of pick data for sources (and
different sets of stations)
over large spatial aperture,
with high levels of noise

GNN predicted source
locations

Improve upon locations
obtained

with traditional inversion

Longitude (Prediction)
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Magnitude Problem
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Magnitude Problem

Invert local magnitude scale for M, per

station

log,o(a;) = CiM + Cylog,o(||x — s]||) + C;

a: arrival amplitude a: source location

C1, Cy, C;: coefficients s;: i'" station location
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GNN: Architecture
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GNN: Architecture
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Results on Synthetic Data

Simulated many realizations
of pick data for sources (and
different sets of stations)
over large spatial aperture,
with high levels of noise

Magnitude (Prediction)

GNN predicted source
magnitudes

Improve upon magnitudes
obtained

with traditional inversion

R?= 0986
o=0.169M
Ratio =0.949
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Magnitude (True)

Magnitude (Prediction)
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Ratio =0.928
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GNN: A general inverse approach

Input feature (location):

to + Ti(s;, ) — 7F)*
hf(si,w) = eXp<—( i /QZB) T )
20%

Input feature (magnitude):
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GNN: A general inverse approach

Observed
Data S

SxM| | bl | M | Fessem= + [Prediction(my,M)

5 (1] (2] 13l
- [1]

Theoretical
Data

Input feature (location):

to + Te(s;, @) — 7F)?
hf(si,w):exp<—(0+ ko) TZ))

2
20%

Input feature (magnitude):
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GNN: A general inverse approach

Observed
Data B,
\ SxM| | | | M | s » | Prediction(m,,M)
i (1] 2] 13 [4]

Theoretical

Data
Input feature (location): Input feature (misfit):

(to +T/€(Si:w) _ z'k)2
h; (si,x) = eXP(‘ 2072 hy'(si,m) = Misfit(s;, f;(m;))

Input feature (magnitude):

* One graph to represent Data
k:))2> domain

A 1y 3 —1 ;
hi;w(si,m) = exp <—( k51 332) 2 =il
Ua

* One graph to represent Model

domain



Applications
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() seismic network (graph)
(] discretized input/output
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o data flow

Sun et al.,
2023



Applications
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Applications

A Input weather state B Predict the next state C Roll out a forecast
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Applications
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Applications

(a)t=0.155s

dsphocemant (m)

(c)t=0.345 (d)t=0.635s

Choi and Kumair,
509/



Applications

Water
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Sanchez-Gonzalez et al.,
2020



Applications

Position
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Cascadia Daily GNSS Time Series Denoising: Graph

Neural Network and Stack Filtering
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Applications

Automated Seismic Source Characterization Using Deep Graph
Neural Networks

M. P. A. van den Ende i J.-P. Ampuero

Denoising of Geodetic Time Series Using Spatiotemporal Graph
Neural Networks: Application to Slow Slip Event Extraction
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