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Signal Processing

https://mriquestions.com/fourier-transform-ft.html

• A signal in time (length 
N),  

Can be represented by a discrete 
vector,

• Or instead, as a set of N discrete

Fourier transform 
coefficients,

wikipedia
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• Each coefficient,                              has some “global” 
knowledge of

• Most real world signals are “bandlimited” – so                  coefficients control most of 
variance  

• The basis of FFT is ordered, from low to high 
frequency
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Assumption of FFT

• The “basis” we decompose with is harmonic in 
time

• Adjacent points in time should behave 
“similarly”

• Large difference between nearby points implies: high energy signal, non-smooth, high 
frequency, etc. 
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Graph Signal Processing

• How do we represent data on a 
graph?

• On one hand, it is 
just 

For 
graph 

Vertex (or node) 
set
Edge set (or Adjacency 
matrix)

• This makes no use of edges 
(structure)

Proble
m

• Cant use FFT directly, since now 
“adjacent points” are no longer linearly 
ordered
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Why Graph Neural Networks?

• CNN’s let us “learn” mappings on regular grid 
domains

Recall convolution 
theorem:

• Assumption: multiple layers of “convolution” permits
functions that are expressible with ~low order 
frequency content in Fourier basis
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Why Graph Neural Networks?

Graph 
convolution:
• Rather than using eigenvectors directly (global FFT 
representation),
Use local message passing (local representation)
• After several rounds of message passing, will have 
“access” to functions supported by graph Laplacian 
eigenvector basis



Why Graph Neural Networks?



Graph Examples

Common examples:
Sensor networks, social networks, smooth irregular surfaces

Less common examples:
Molecules, multi-particle simulation, sparse matrices, etc.

Battagilia, et al., 
2018



Graph Neural Networks

• Technically, could choose fixed “filters” to apply for 
graph convolution, but would be hard to hand 
engineer

• Rather, it’s easier to “learn” filters, and process 
data in a higher-dimensional (lifted) space



Graph Neural Networks

Message 
Passing:

Node and edge 
features:

Learnable 
weights:



Graph Neural Networks

Message 
Passing:

(1). For each node i, “collect” all neighboring nodes of node i

(2). Transform each neighboring latent vectors by phi_msg

(3). POOL (mean, max, or sum pool) over node dimension

(4). Concatenate with latent vector of node i from previous layer

(5). Transform concatenated vector with phi_agg



GNN: Properties

Message 
Passing:

• Can also be expressed in matrix notation using Adjacency, 
but this limits perspective and extensions

(GCN; Kipf and Welling, 
2016)
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• At each layer of GNN, all nodes 
features vectors,                      , are 
updated based on self, and neighbors
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Message 
Passing:

•  The graph structure can be the 
feature

GNN: Properties



Message 
Passing:

• Information transfers locally, but 
expands to further “hops” away with 
every convolution layer

GNN: Properties

Battagilia, et al., 
2018



Message 
Passing:

GNN: Properties
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GNN: Considerations

1). Diameter of graph
(longest, shortest path distance; e.g.,
Distance between most separated 
nodes)

If long-range interactions 
needed, many ideas proposed:

(i). Add “virtual nodes” connected 
to all nodes, (ii). Use global 
summary features, (iii). Add more 
edges to adjacency (e.g., 
expander graphs), (iv). Create 
multi-scale, multi-resolution 
graphs…
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GNN: Considerations

3). Absolute node positions and extra 
features

“Position aware GNNs” (You et al., 2019) – 
nodes “know” absolute position

“Identity aware GNNs” (You et al., 2021) – 
nodes “know” their unique type; access 
different learnable GNN message passing 
functions
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To keep discriminative ability of nodes of deep GNNs, “residual” connections necessary 
(Hamilton et al., 2017)
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GNN: Limitations

2). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size 
representation latent vector, which limits expressiveness of representation. Long-range 
interactions are weak.

Can improve performance with more well-interconnected (sparse) graphs, e.g., expander 
graphs.

Deac et al., 2022; “Expander Graph 
Propagation”

Cayley graphs, 
wikipedia



GNN: Limitations

2). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size 
representation latent vector, which limits expressiveness of representation. Long-range 
interactions are weak.

Li et al., 2020; “Multipole Graph Neural 
Operator”

Hierarchical 
GNNs
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GNN: Limitations

3). Over-squashing: A large “volume” of messages is slowly aggregated into a fixed size 
representation latent vector, which limits expressiveness of representation. Long-range 
interactions are weak.

1). Diameter of graph
(longest, shortest path distance; e.g.,
Distance between most separated 
nodes)

2). Over-smoothing : Since message 
passing iteratively shares information, it 
roughly emulates a diffusion/smoothing 
process.
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Application: Earthquake Location

Inversio
n

Maximum likelihood 
location

S
ta
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n 
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de

x

Time 
(s)

Maximize posterior 
probability



Station 
Graph

Spatial 
Graph

8-nearest-neighbo
rs

15-nearest-neighbo
rs

Input Graphs
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GNN: Architecture

Input 
feature:

pre-stack BP 
metric
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GNN: Architecture

Cartesian Product 
graph:

Nodes: all pairs of 
(s,x)

Edge
s:

Kadambari et al., 
2021

• Cartesian product, Kronecker 
product, 
Strong product, Lexicographic 
product…



Forward Map



Results on Synthetic Data

Simulated many realizations
of pick data for sources (and 
different sets of stations)
over large spatial aperture,
with high levels of noise

GNN predicted source 
locations
Improve upon locations 
obtained
with traditional inversion
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Magnitude Problem

Inversio
n

Maximum likelihood 
magnitude

Invert local magnitude scale for M, per 
station



Input Graphs
Station 
Graph Magnitude 

Graph

8-nearest-neighbo
rs

10-nearest-neighbo
rs

m1 m2 m3 m4 m5 m6

M: -3 to 7, with 0.1 M 
increment
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Input 
feature:



Results on Synthetic Data

Simulated many realizations
of pick data for sources (and 
different sets of stations)
over large spatial aperture,
with high levels of noise

GNN predicted source 
magnitudes
Improve upon magnitudes 
obtained
with traditional inversion
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Input feature (magnitude):

Input feature (location):



GNN: A general inverse approach

Observed 
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GNN: A general inverse approach

Input feature (magnitude):

Input feature (location): Input feature (misfit):

• One graph to represent Data 
domain

• One graph to represent Model 
domain

Observed 
Data

Theoretical 
Data
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Sanchez-Gonzalez et al., 
2020 
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